If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+18k+21=0
a = 1; b = 18; c = +21;
Δ = b2-4ac
Δ = 182-4·1·21
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4\sqrt{15}}{2*1}=\frac{-18-4\sqrt{15}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4\sqrt{15}}{2*1}=\frac{-18+4\sqrt{15}}{2} $
| 19.8+17.4h=19.5h-19.56-4.5h | | 6(d+5)=4(d-2)+2d | | –7+8v=6v+5 | | 4n-3=6n+19 | | 6(n+8)=96-6(n-8) | | 7(d+8)=4(d–5)+3d | | -9+6u=5u | | 3(7x+1)=21x–9 | | 11(d+6)=2(d–3)+9d | | 20+4j=2j-10+6 | | 11(d+6)=2(d–3)+9d | | 2/3=3t/5+3 | | 9k-5=8k | | 14.58-17.9b=-9.8b-16.42-10.1b | | 9d-2=7d | | -p+16=2p-5p-18 | | -10-f=2f+8 | | –143=1–7.2x | | 6+14h=-15+17h | | 2(c+1)-2=8 | | 4z=5z+20 | | -5(x-4)+3(x+3=12 | | 39x+11=89 | | -11b+(-8b)+(-5b)+8=-16 | | 10x−6=2(5x+3) | | 3x^2-29-10=0 | | X-5/2-x+6/5=x/8 | | 3w−10=41 | | 16(z+3)=4)z+9 | | 89=-11+10t | | x/20=18 | | 10.1+u/6=9.1 |